2,444 research outputs found

    Recognition of micro-scale deformation structures in glacial sediments - pattern perception, observer bias and the influence of experience

    Get PDF
    It is a scientist's mission to try to remain unbiased. However, certain factors play a role in scientific analyses that are not controlled by conscious thought. These factors are potentially very important in areas of science where interpretations are based on a scientist's ability to identify patterns or structures. One such area is the micromorphology of glacial sediments. In this paper we investigate the role of an analyst's experience in relation to pattern perception with specific reference to turbate microstructures in glacial diamictons. An experiment was conducted on 52 participants, which demonstrated that, as may be expected, more experienced (glacial) micromorphologists tend to exhibit a higher sensitivity-to-signal, but that complete novices, if given clear instructions, can reach levels of sensitivity similar to those of experts. It also showed, perhaps more surprisingly, that response bias does not decrease with experience. We discuss psychological factors, such as the drive for success and consistency, that may have contributed to these results and investigate their possible implications in the micromorphological analysis and interpretation of glacial sediments

    Recall termination in free recall

    Get PDF
    Although much is known about the dynamics of\ud memory search in the free recall task, relatively little is\ud known about the factors related to recall termination. Rean-\ud alyzing individual trial data from 14 prior studies (1,079\ud participants in 28,015 trials) and defining termination as\ud occurring when a final response is followed by a long\ud nonresponse interval, we observed that termination proba-\ud bility increased throughout the recall period and that retriev-\ud al was more likely to terminate following an error than\ud following a correct response. Among errors, termination\ud probability was higher following prior-list intrusions and\ud repetitions than following extralist intrusions. To verify that\ud this pattern of results can be seen in a single study, we report\ud a new experiment in which 80 participants contributed recall\ud data from a total of 9,122 trials. This experiment replicated\ud the pattern observed in the aggregate analysis of the prior\ud studies.\u

    Calibration of White Dwarf cooling sequences: theoretical uncertainty

    Full text link
    White Dwarf luminosities are powerful age indicators, whose calibration should be based on reliable models. We discuss the uncertainty of some chemical and physical parameters and their influence on the age estimated by means of white dwarf cooling sequences. Models at the beginning of the white dwarf sequence have been obtained on the base of progenitor evolutionary tracks computed starting from the zero age horizontal branch and for a typical halo chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear reaction rates, convection, mass loss and initial chemical composition are discussed. Then, various cooling sequences for a typical white dwarf mass (M=0.6 Mo) have been calculated under different assumptions on some input physics, namely: conductive opacity, contribution of the ion-electron interaction to the free energy and microscopic diffusion. Finally we present the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much effort has been spent to extend the equation of state down to the low temperature and high density regime. An analysis of the latest improvement in the physics of white dwarf interiors is presented. We conclude that at the faint end of the cooling sequence (log L/Lo=-5.5) the present overall uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr. We suggest that this uncertainty could be substantially reduced by improving our knowledge of the conductive opacity (especially in the partially degenerate regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap

    Life Products of Stars

    Get PDF
    We attempt to document complete energetic transactions of stars in their life. We calculate photon and neutrino energies that are produced from stars in their each phase of evolution from 1 to 8 M_sun, using the state-of-the-art stellar evolution code, tracing the evolution continuously from pre-main sequence gravitational contraction to white dwarfs. We also catalogue gravitational and thermal energies and helium, and heavier elements that are stored in stars and those ejected into interstellar space in each evolutionary phase.Comment: 26 pages, including 8 figures and 3 tables. Submitted to ApJ

    Can groundwater be successfully implemented as a bulk water resource within rural Limpopo Province? Analysis based on GRIP datasets

    Get PDF
    Groundwater is a strategic water resource in rural Limpopo Province and it accounts for almost 70% of rural domestic water supply. The resource is available throughout the Province in varying quantities and qualities depending on the hydrogeological properties of the underlying aquifer. These properties are mostly secondary in nature and are constrained by the processes of weathering, faulting, fracturing and the influence of intrusive rocks. These properties define typical fractured aquifers in which the selection of drilling sites requires a thorough scientific approach to locate a successful productive borehole. While most water service authorities in the Province have been randomly developing new boreholes with limited success rates, the analysis of datasets in the newly established groundwater data repository, the Limpopo Groundwater Resource Information Project (GRIP) demonstrates that large quantities of groundwater can be obtained and used for bulk supply if the drilling sites are scientifically selected. The GRIP dataset contains 24 922 entries of which 4 000 were tested. The pumping test results indicate that an estimated 576 000 m3/d (210 Mm3/a) can be sustainably abstracted from boreholes in approximately 2 500 villages that are dispersed throughout the Province. However, more than 50% of these boreholes areunequipped of which 3 000 can provide a combined yield of 109 Mm3/a based on a 24 h abstraction rate. These results show that groundwater can be developed as a potential viable bulk-water supply source. This paper attempts to demonstrate, using the existing GRIP dataset, that groundwater is an underutilised resource that can be viably and cost-effectively developed as an alternative bulk water source or conjunctively with surface water

    Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    Full text link
    We present an analysis of spectroscopic and photometric data for cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron et al.(2001), and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey.Comment: 6 pages,3 figures, 14th European Workshop on White Dwarfs, ASP Conference Series, in pres

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    The s-Process in Rotating Asymptotic Giant Branch Stars

    Full text link
    (abridged) We model the nucleosynthesis during the thermal pulse phase of a rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core where large amounts of protons and C12 co-exist. We follow the abundance evolution in this layer, in particular that of the neutron source C13 and of the neutron poison N14. In our AGB model mixing persists during the entire interpulse phase due to the steep angular velocity gradient at the core-envelope interface. We follow the neutron production during the interpulse phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1, which is too small to produce any significant s-process. In parametric models, we then investigate the combined effects of diffusive overshooting from the convective envelope and rotationally induced mixing. Models with overshoot and weaker interpulse mixing - as perhaps expected from more slowly rotating stars - yield larger neutron exposures. We conclude that the incorporation of rotationally induce mixing processes has important consequences for the production of heavy elements in AGB stars. Through a distribution of initial rotation rates it may lead to a natural spread in the neutron exposures obtained in AGB stars of a given mass - as appears to be required by observations. Our results suggest that both processes, diffusive overshoot and rotational mixing, may be required to obtain a consistent description of the s-process in AGB stars which fulfils all observational constraints. Finally, we find that mixing due to rotation within our current framework does increase the production of N15 in the partial mixing zone, however still falling short of what seems required by observations.Comment: 50 pages, 13 figures, ApJ in press, tentatively scheduled for v593 n2 August 20, 200

    On the fraction of intermediate-mass close binaries that explode as type-Ia supernovae

    Full text link
    Type-Ia supernovae (SNe-Ia) are thought to result from a thermonuclear runaway in white dwarfs (WDs) that approach the Chandrasekhar limit, either through accretion from a companion or a merger with another WD. I compile observational estimates of the fraction eta of intermediate-mass stars that eventually explode as SNe-Ia, supplement them with several new estimates, and compare them self-consistently. The estimates are based on five different methods, each utilising some observable related to the SN-Ia rate, combined with assumptions regarding the IMF: the ratio of SN-Ia to core-collapse rates in star-forming galaxies; the SN-Ia rate per unit star-formation rate; the SN-Ia rate per unit stellar mass; the iron to stellar mass ratio in galaxy clusters; and the abundance ratios in galaxy clusters. The five methods indicate that a fraction in the range eta~2-40% of all stars with initial masses of 3-8 M_sun (the generally assumed SN-Ia progenitors) explode as SNe-Ia. A fraction of eta~15% is consistent with all five methods for a range of plausible IMFs. Considering also the binarity fraction among such stars, the mass ratio distribution, the separation distribution, and duplicity (every binary can produce only one SN-Ia explosion), this implies that nearly every intermediate mass close binary ends up as a SN-Ia, or possibly more SNe-Ia than progenitor systems. Theoretically expected fractions are generally one to two orders of magnitude lower. The problem could be solved: if all the observational estimates are in error; or with a ``middle-heavy'' IMF; or by some mechanism that strongly enhances the efficiency of binary evolution toward SN-Ia explosion; or by a non-binary origin for SNe-Ia.Comment: MNRAS, accepted versio
    • …
    corecore